A. SAFETY AND SANITATION

1. Incorporate safe use of lab equipment.

- Sign food safety and conduct contract and file contract (parents, students signatures).
- Score 90% on safety test.
- Discuss and guiz students on lab safety.
- Prepare first aid supplies, personal and emergency protection equipment or supplies.
- Recognize common laboratory hazards.
- Locate a Materials Safety Data Sheet and/or fire extinguishers.

2. Integrate safe lab techniques and procedures.

- Inspect handwashing skills using glo-germ.
- Discuss appropriate use of equipment.

3. Implement sanitation practices in the workplace.

- Practice aseptic techniques.
- View video on universal precautions.
- View the ServSafe video.
- Sterilize reagents and equipment.
- Evaluate safety and sanitation procedures when receiving, preparing, serving, and storing food.

B. SCIENTIFIC EVALUATIONS

1. Explain why scientific equipment was required for scientific investigations.

- Compare the accuracy of using a measuring cup, beaker, and a graduated cylinder.
- Role play instances when scientific equipment is not used and the effect on scientific investigations.
- Conduct different kinds of scientific investigations.
- Review and analyze scientific investigations

2. Analyze methods used and factors involved in the scientific processing o foods.

- Use scientific method to analyze foods.
- Complete a lab.

3. Investigate the relationship between matter and foods.

- Test pH in common food ingredients.
- Identify various states of matter: solids, liquids, and gases.
- Read food labels and identify various states of matter.
- Take 10-12 items and classify as types of matter (pure substance, mixtures, compounds, etc.).

4. Implement the scientific method.

- All labs and activities will be conducted using the scientific method.
- Make chart showing the steps of the scientific method.
- Show proper and improper procedures in an experiment given examples of both.
- Use checklist to evaluate the scientific method.

5. Evaluate foods using the sensory process.

- Conduct scientific sensory evaluations of food: blindfold taste tests.
- Perform odor recognition tests.
- Conduct scientific sensory evaluations of food, e.g., use yogurt or cookies to determine mouth feel and color.

6. Verify that basic scientific principles were used in experiments.

Checklist evaluation by peers

C. METABOLISM

- 1. Analyze the metabolic impact of nutrients on the body.
 - Create daily meal plan for various caloric intakes.
 - Construct a life-size model of the human digestive system and trace the pathway of a hamburger through the digestive system.

D. FOOD CHEMISTRY

- 1. Analyze the properties and uses of water.
 - Investigate the use of diuretics.
 - Demonstrate the characteristics of gas in a water solution.
 - Compare the density of ice and water.
 - Demonstrate impact of mineral ions in water.
- 2. Analyze enzyme reactions in foods.
 - Enzymatic browning
 - Using peroxide to test for the stopping of enzyme reactions
- 3. Analyze the function of acids and bases in foods using the pH scale.
 - Compare shelf life of food based on pH.
- 4. Differentiate the functions of the nutrients.
 - Create a multimedia presentation on the functions of the nutrients.

E. FOOD MICROBIOLOGY

- 1. Investigate the process of fermentation.
 - Make Kim Chee.
 - Make yeast bread.
 - Bacterial Fermentation tasting lab by making Rueben Sandwich.
- 2. Specify the process for making cultured foods (i.e. dairy foods).
 - Make Cheese
 - Make buttermilk
 - Relate the economic impact of food spoilage in underdeveloped countries.

F. FOOD PROCESSING AND PRESERVATION

- 1. Compare food-processing methods.
 - Compare the taste of orange juice in different types of packaging, example juice box, paper carton, and plastic container.
 - Can different foods like tomatoes, peaches, or whatever is in season.
- 2. Determine the appropriate processing methods for popular food items.
 - Field trip to a food process plant
- 3. Evaluate various methods of preservation: dehydration, freezing, canning, fermenting, and irradiation.
 - Construct a model of how the various forms of food preservation interrelate.
 - Determine the best method of preservation by taking one food through several preservation methods.

G. FOOD SAFETY

- 1. Identify the epidemiological studies associated with life experiences.
 - Debate the risks and benefits of using pesticides to produce foods.
 - Identify the risks and/or threats to the world's food supply.

2. Relate the risks and/or threats to the world's food supply.

- Activity Recommend potential remedies for those threats/risks.
- Evaluate the process of inspecting a food facility for safe sanitation practices.
- Assess the impact of biotechnology/recombinant DNA on human health and wellness.
- List the economic and ethical advantages and disadvantages of using biotechnology to produce, process, and preserve food products.

H. DEVELOPMENT

- 1. Produce an original product, technique, or process that might be used in the food industry.
 - Using Food Science and Dietetics Standards, produce an original product, technique, or process that might be used in the food industry.

I. **CAREERS IN FOOD SCIENCE**

- 1. Research career paths within food science, dietetics, and nutrition.
 - Create a brochure on different career paths
- 2. Integrate knowledge, skills, and practices required for careers in food sciences.
 - Create a career portfolio using showcase work from food science activities
 - Course exit interview
 - Present the product created to a group of potential buyers/investors.